Synthetic setae emulate the setae found on the gecko feet and scientific research in this area is driven towards the development of Dry glue. Geckos have no difficulty mastering vertical walls and are apparently capable of adhering themselves to just about any surface. The five-toed feet of a gecko are covered with elastic hairs called setae and the ends of these hairs are split into nanoscale structures called spatulae (because of their resemblance to actual ). The sheer abundance and proximity to the surface of these spatulae make it sufficient for van der Waals forces alone to provide the required adhesion strength. Following the discovery of the gecko's adhesion mechanism in 2002, which is based on van der Waals forces, biomimetic adhesives have become the topic of a major research effort. These developments are poised to yield families of novel adhesive materials with superior properties which are likely to find uses in industries ranging from defense and nanotechnology to healthcare and sport.
The possibilities finally narrowed down to intermolecular forces, and the development of electron microscopy in the 1950s, which revealed the micro-structure of the setae on the gecko's foot, provided further proof to support this hypothesis. The problem was finally solved in 2000 by a research team led by biologists Kellar Autumn of Lewis & Clark College in Portland, Oregon, and Robert Full at the University of California at Berkeley.Autumn, K., Liang, Y.A., Hsieh, S.T., Zesch, W., Chan, W-P., Kenny, W.T., Fearing, R. and Full, R.J. (2000), "Adhesive force of a single gecko foot-hair", Nature, Vol. 405, pp. 681–5. They showed that the underside of a gecko toe typically bears a series of ridges, which are covered with uniform ranks of setae, and each seta further divides into hundreds of split ends and flat tips called (see figure on the right). A single seta of the tokay gecko is roughly 110 micrometers long and 4.2 micrometers wide. Each of a seta's branches ends in a thin, triangular spatula connected at its apex. The end is about 0.2 micrometers long and 0.2 micrometers wide. Autumn, K. (2006). How gecko toes stick. American Scientist 94, 124–132. The adhesion between gecko's foot and the surfaces is exactly the result of the Van der Waals force between each seta and the surface molecules. A single seta can generate up to 200 μN of force.Autumn, K., Liang, Y. A., Hsieh, S. T., Zesch, W., Chan, W.-P., Kenny, W. T., Fearing, R. & Full, R. J. (2000) Nature 405, 681–685. There are about 14,400 setae per square millimeter on the foot of a tokay gecko, which leads to a total number of about 3,268,800 setae on a tokay gecko's two front feet. From the equation for intermolecular potential:
We find that the intermolecular force, or the van der Waals force in this case between two surfaces is greatly dominated by the number of contacts. This is exactly the reason why the gecko's feet can generate extraordinary adhesion force to different kinds of surfaces. The combined effect of millions of spatulae provides an adhesive force many times greater than the gecko needs to hang from a ceiling by one foot.
Kellar Autumn and his research group have conducted experiments to test and demonstrate this ability of the gecko. Hansen, W. and Autumn, K. (2005). Evidence for self-cleaning in gecko setae. Proc. Natl. Acad. Sci. U.S.A. 102, 385–389. They also use the contact mechanical model to suggest that self-cleaning occurs by an energetic disequilibrium between the adhesive forces attracting a dirt particle to the substrate and those attracting the same particle to one or more spatulae. In other words, the Van der Waals interaction energy for the particle-wall system requires a sufficiently great number of particle-spatula systems to counterbalance; however, relatively few spatulae can actually attach to a single particle, therefore the contaminant particles tend to attach to the substrate surface rather than the gecko's toe due to this disequilibrium. Figure on the right shows the model of interaction between N spatulas, a dirt particle and a planar wall.
It is important to know that this property of self-cleaning appears intrinsic to the setal nano-structure and therefore should be replicable in synthetic adhesive materials. In fact, Kellar Autumn's group observed how self-cleaning still occurred in arrays of setae when isolated from the geckos used.
1. Anisotropic attachment 2. High μ' (pulloff/preload) | Cantilever beam | Shaft length, radius, density, shaft angle |
3. Low detachment force | Low effective stiffness | Shaft modulus, spatular shape |
4. Material independence stickiness | Van der Waals mechanism JKR-like* contact mechanics Nanoarray (divided contact) | Spatular size, spatular shape, spatular density |
5. Self-cleaning ability | Nanoarray (divided contact) | Spatular bulk modulus |
6. Anti-self-stickiness | Small contact area | Particle size, shape, surface energy |
7. Nonsticky default state | Nonsticky spatulae, hydrophobic, Van der Waals force | Spatular size, shape, surface energy |
In summary, the key parameters in the design of synthetic gecko adhesive include:
There is a growing list of benchmark properties that can be used to evaluate the effectiveness of synthetic setae, and the adhesion coefficient, which is defined as:
where is the applied preload force, and is the generated adhesion force. The adhesion coefficient of real gecko setae is typically 8~16.
The group prepared flexible fibers of polyimide as the synthetic setae structures on the surface of a 5 μm thick film of the same material using electron beam lithography and Dry etching. The fibres were 2 μm long, with a diameter of around 500 nm and a periodicity of 1.6 μm, and covered an area of roughly 1 cm2 (see figure on the left). Initially, the team used a silicon wafer as a substrate but found that the tape's adhesive power increased by almost 1,000 times if they used a soft bonding substrate such as Scotch tape – This is because the flexible substrate yields a much higher ratio of the number of setae in contact with the surface over the total number of setae.
The result of this "gecko tape" was tested by attaching a sample to the hand of a 15 cm high plastic Spider-Man figure weighing 40 g, which enabled it to stick to a glass ceiling, as is shown in the figure. The tape, which had a contact area of around 0.5 cm2 with the glass, was able to carry a load of more than 100 g. However, the adhesion coefficient was only 0.06, which is low compared with real geckos (8~16).
The nanotubes were typically 10–20 nm in diameter and around 65 μm long. The group then encapsulated the vertically aligned nanotubes in PMMA polymer before exposing the top 25 μm of the tubes by etching away some of the polymer. The nanotubes tended to form entangled bundles about 50 nm in diameter because of the solvent drying process used after etching. (As is shown in the figure on the right).
The results were tested with a scanning probe microscope, and it showed that the minimum force per unit area as 1.6±0.5×10−2 nN/nm2, which is far larger than the figure the team estimated for the typical adhesive force of a gecko's setae, which was 10−4 nN/nm2. Later experimentsGe, L., Sethi, S., Ci, L., Ajayan, P.M. and Dhinojwala, A. (2007), "Carbon nanotube-based synthetic gecko tapes", Proc. Natl. Acad. Sci. USA, Vol. 104, pp. 10792–5. with the same structures on Scotch tape revealed that this material could support a shear stress of 36 N/cm2, nearly four times higher than a gecko foot. This was the first time synthetic setae exhibited better properties than those of natural gecko foot. Moreover, this new material can adhere to a wider variety of materials, including glass and Teflon.
This new material has some problems, though. When pulled parallel to a surface, the tape releases, not because the CNTs lose adhesion from the surface but because they break, and the tape cannot be reused in this case. Moreover, unlike gecko's setae, this material only works for small area (approx. 1 cm2). The researchers are currently working on a number of ways to strengthen the nanotubes and are also aiming to make the tape reusable thousands of times, rather than the dozens of times it can now be used.
The resulting adhesive, named 'geckel', was described to be an array of gecko-mimetic, 400 nm wide silicone pillars, fabricated by electron-beam lithography and coated with a mussel-mimetic polymer, a synthetic form of the amino acid that occurs naturally in mussels (left). .
Unlike true gecko glue, the material depends on van der Waals forces for its adhesive properties and on the chemical interaction of the surface with the hydroxyl groups in the mussel protein. The material improves wet adhesion 15-fold compared with uncoated pillar arrays. The so-called "geckel" tape adheres through 1,000 contact and release cycles, sticking strongly in both wet and dry environments.
So far, the material has been tested on silicon nitride, titanium oxide and gold, all of which are used in the electronics industry. However, for it to be used in bandages and medical tape, a key potential application, it must be able to adhere to human skin. The researchers tested other mussel-inspired synthetic proteins that have similar chemical groups and found that they adhere to living tissue.
Geckel is an adhesive that can attach to both wet and dry surfaces. Its strength "comes from coating fibrous silicone, similar in structure to a gecko's foot, with a polymer that mimics the 'glue' used by mussels."
The team drew inspiration from , who can support hundreds of times their own body weight. Geckos rely on billions of hair-like structures, known as setae to adhere. Researchers combined this ability with the sticking power of mussels. Tests showed that "the material could be stuck and unstuck more than 1,000 times, even when used under water", retaining 85 percent of their adhesive strength.
Phillip Messersmith, lead researcher on the team that developed the product, believes that the adhesive could have many medical applications, for example tapes that could replace Surgical suture to close a wound and a water resistant adhesive for bandages and drug-delivery patches.
In 2006, researchers at BAE Systems Advanced Technology Centre at Bristol, UK, announced that they had produced samples of "synthetic gecko" – arrays of mushroom-shaped hairs of polyimide – by photolithography, with diameters up to 100 μm. These were shown to stick to almost any surface, including those covered in dirt, and a pull-off of 3,000 kg/m^2 was measured.
More recently, the company has used the same technique to create patterned silicon moulds to produce the material and has replaced the polyimide with polydimethylsiloxane (PDMS). This latest material exhibited a strength of 220 kPa. Photo-lithography has the benefit of being widely used, well understood and scalable up to very large areas cheaply and easily, which is not the case with some of the other methods used to fabricate prototype materials.
In 2019, researchers from Akron Ascent Innovations, LLC, a company spun-out from University of Akron technology, announced the commercial availability of " ShearGrip" brand dry adhesives. Rather than relying on photolithography or other micro-fabrication strategies, the researchers employed electrospinning to produce small diameter fibers based on the principle of contact splitting exploited by geckos. The product has reported shear strength greater than 80 pounds per square inch, with clean removal and reusability on many surfaces, and the ability to laminate the material to various face stocks in one or two sided constructions. The approach is claimed to be more scalable than other strategies to produce synthetic setae and has been used to produce products for consumer markets under the brand name Pinless.
As progress continues in , research has begun to focus on developing robust climbers. Various robots have been developed that climb flat vertical surfaces using suction, magnets, and arrays of small spines, to attach their feet to the surface.
More recently, robots have been developed that utilize synthetic adhesive materials for climbing smooth surfaces such as glass.
These crawler and climbing robots can be used in the military context to examine the surfaces of aircraft for defects and are starting to replace manual inspection methods. Today's crawlers use vacuum pumps and heavy-duty suction pads which could be replaced by this material.
Stickybot is an embodiment of the hypotheses about the requirements for mobility on vertical surfaces using dry adhesion. The main point is that we need controllable adhesion. The essential ingredients are:
Commercial production
Applications
Nano tape
Robotics
RiSE platform
Stickybot
Geckobot
Joint replacement
External links
|
|